8-4 The Slope-Intercept Form of a Linear Equation

Objective: To use the slope-intercept form of a linear equation.

Vocabulary

y-intercept The y-coordinate of a point where a graph intersects the y-axis.
Since the point is on the y-axis, its x-coordinate is 0 .
Slope-intercept form of an equation The equation of a line in the form $y=m x+b$, where m is the slope and b is the y-intercept.

Parallel lines Lines in the same plane that do not intersect. Lines with the same slope and different y-intercepts are parallel.

Example 1 Find the slope and y-intercept of each line:
a. $y=\frac{5}{2} x+4$
b. $y=\frac{5}{2} x \quad$ c. $y=4$

Solution Use the slope-intercept form, $y=m x+b$.
a. $y=\frac{5}{2} x+4$
b. $y=\frac{5}{2} x$

The slope is $\frac{5}{2}$ and the y-intercept is 4 .
$y=\frac{5}{2} x+0$
The slope is $\frac{5}{2}$ and the y-intercept is 0 .
c. $y=4$
$y=0 x+4$

The slope is 0 and the y-intercept is 4 .

Find the slope and the y-intercept.

1. $y=x-3$
2. $y=2 x+3$
3. $y=-2$
4. $y=\frac{1}{3} x+4$
5. $y=-\frac{1}{2} x$
6. $y=-\frac{1}{3} x-3$
7. $y=-2 x+6$
8. $y=-4 x+8$
9. $y=-x+5$
10. $y=x-9$
11. $y=3 x-2$
12. $y=3$

Example 2 Use only the slope and y-intercept to graph $y=-\frac{2}{3} x+4$.
Solution 1. Since the y-intercept is 4 , plot $(0,4)$.
2. Since the slope $m=-\frac{2}{3}=\frac{-2}{3}=\frac{\text { rise }}{\text { run }}$, move 3 units to the right of $(0,4)$ and 2 units down to locate a second point.
3. Draw a line through the points.

Use only the slope and y-intercept to graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.
13. $y=\frac{2}{3} x-4$
14. $y=\frac{3}{4} x-3$
15. $y=-\frac{1}{2} x$
16. $y=-\frac{3}{4} x-1$
17. $y=-x+3$
18. $y=2 x+1$
19. $y=-3$
20. $y=5$

8-4 The Slope-Intercept Form of a Linear Equation (continued)

Example 3 Use only the slope and y-intercept to graph $2 x-3 y=6$.
Solution $\quad 2 x-3 y=6 \quad\{$ Solve for y to transform the equation $-3 y=-2 x+6 \quad\{$ into the form $y=m x+b$. $y=\frac{2}{3} x-2$

1. Since $b=-2$, plot $(0,-2)$.
2. Since $m=\frac{2}{3}$, move 3 units to the right and 2 units up to locate a second point.
3. Draw a line through the points.

Use only the slope and y-intercept to graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.
21. $2 x+y=4$
22. $3 x+y=6$
23. $2 x-y=-6$
24. $3 x-y=3$
25. $x+2 y=-2$
26. $2 x-3 y=6$
27. $4 x-3 y=12$
28. $x+4 y=4$

Example 4 Determine whether the lines with equations $4 x+5 y=20$ and $4 x+5 y=10$ are parallel.
Solution Write each equation in slope-intercept form:

$$
\begin{array}{rlrl}
4 x+5 y & =20 & 4 x+5 y & =10 \\
5 y & =-4 x+20 & 5 y & =-4 x+10 \\
y & =-\frac{4}{5} x+4 & y & =-\frac{4}{5} x+2
\end{array}
$$

Since both lines have the same slope and different y-intercepts, they are parallel.

Determine whether the lines whose equations are given are parallel.
29. $2 x-y=5$
$2 x-y=8$
30. $x-3 y=2$
$-2 x+6 y=12$
31. $\begin{array}{r}2 x-y=6 \\ 2 y-x=6\end{array}$
32. $3 x-y=2$
33. $\frac{1}{2} x-\frac{1}{2} y=4$
$-6 x+2 y=8$

$$
2 x-2 y=3
$$

34. $\begin{aligned} 4 x+\frac{1}{4} y=2 \\ 4 x+4 y=2\end{aligned}$

Mixed Review Exercises

Find the slope of the line through each pair of given points.

1. $(-2,1),(-1,2)$
2. $(1,2),(3,-2)$
3. $(-3,4),(-1,-2)$
4. $(1,5),(2,8)$

Factor.
5. $2 x^{2}+7 x+6$
6. $2 x^{2}-4 x+2$
7. $4 y^{2}-25 z^{2}$
8. $m^{2}-3 m n-10 n^{2}$

