8–4 The Slope-Intercept Form of a Linear Equation

Objective: To use the slope-intercept form of a linear equation.

Vocabulary

y-intercept The y-coordinate of a point where a graph intersects the y-axis. Since the point is on the y-axis, its x-coordinate is 0.

Slope-intercept form of an equation The equation of a line in the form y = mx + b, where m is the slope and b is the y-intercept.

Parallel lines Lines in the same plane that do not intersect. Lines with the same slope and different *y*-intercepts are parallel.

Example 1	Find the slope and y-interce	ppt of each line: a. $y = \frac{5}{2}x + \frac{5}{2}x$	4 b. $y = \frac{5}{2}x$ c. $y = 4$
Solution	Use the slope-intercept form	n, y = mx + b.	-
	a. $y = \frac{5}{2}x + 4$	b. $y = \frac{5}{2}x$	c. $y = 4$ y = 0x + 4
	$y = \frac{5}{2}x + 4$	$y = \frac{5}{2}x + 0$	
	m' b The slope is $\frac{5}{2}$ and	$m \dot{b}$ The slope is $\frac{5}{2}$ and	The slope is 0 and the wintercort is 4
	the y-intercept is 4.	the y-intercept is 0.	uie y-intercept is 4.

Find the slope and the y-intercept.

 1. y = x - 3 2. y = 2x + 3 3. y = -2 4. $y = \frac{1}{3}x + 4$

 5. $y = -\frac{1}{2}x$ 6. $y = -\frac{1}{3}x - 3$ 7. y = -2x + 6 8. y = -4x + 8

 9. y = -x + 5 10. y = x - 9 11. y = 3x - 2 12. y = 3

Example 2 Use only the slope and y-intercept to graph $y = -\frac{2}{3}x + 4$.

Solution 1. Since the y-intercept is 4, plot (0, 4). 2. Since the slope $m = -\frac{2}{3} = \frac{-2}{3} = \frac{\text{rise}}{\text{run}}$

- move 3 units to the right of (0, 4) and 2 units down to locate a second point.
- 3. Draw a line through the points.

Use only the slope and y-intercept to graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.

13. $y = \frac{2}{3}x - 4$	14. $y = \frac{3}{4}x - 3$	15. $y = -\frac{1}{2}x$	16. $y = -\frac{3}{4}x - 1$
17. $y = -x + 3$	18. $y = 2x + 1$	19. $y = -3$	20. $y = 5$

NAME .

Example 3 Use only the slope and y-intercept to graph 2x - 3y = 6. **Solution** 2x - 3y = 6 Solve for y to transform the equation -3y = -2x + 6 Solve for y to transform the equation into the form y = mx + b. $y = \frac{2}{3}x - 2$ 1. Since b = -2, plot (0, -2). 2. Since $m = \frac{2}{3}$, move 3 units to the right and 2 units up to locate a second point. 3. Draw a line through the points.

8-4 The Slope-Intercept Form of a Linear Equation (continued)

Use only the slope and y-intercept to graph each equation. You may wish to verify your graphs on a computer or a graphing calculator.

25. $x + 2y = -2$	26. $2x - 3y = 6$	27. $4x - 3y = 12$	28. $x + 4y = 4$
21. $2x + y = 4$	22. $3x + y = 6$	23. $2x - y = -6$	24. $3x - y = 3$

Example 4	Determine whether the lines with equations $4x + 5y = 20$ and $4x + 5y = 10$ are parallel.		
Solution	Write each equation in slope-intercept form:		
	$4x + 5y = 20 5y = -4x + 20 y = -\frac{4}{5}x + 4 $ $4x + 5y = 10 5y = -4x + 10 y = -\frac{4}{5}x + 4 $ $y = -\frac{4}{5}x + 2 slope = -\frac{4}{5}y-intercept = 4 $ $slope = -\frac{4}{5}y-intercept = 2$		
	Since both lines have the same slope and different y-intercepts, they are parallel.		

Determine whether the lines whose equations are given are parallel.

29. $2x - y = 5$	30. $x - 3y = 2$	31. $2x - y = 6$
2x - y = 8	-2x + 6y = 12	2y - x = 0
32. $3x - y = 2$	$33. \ \frac{1}{2}x - \frac{1}{2}y = 4$	34. $4x + \frac{1}{4}y = 2$
-6x + 2y = 8	2x - 2y = 3	4x + 4y = 2

Mixed Review Exercises

Find the slope of the line through each pair of given points.

1.
$$(-2, 1), (-1, 2)$$
 2. $(1, 2), (3, -2)$ **3.** $(-3, 4), (-1, -2)$ **4.** $(1, 5), (2, 8)$
Factor.

5. $2x^2 + 7x + 6$ **6.** $2x^2 - 4x + 2$ **7.** $4y^2 - 25z^2$ **8.** $m^2 - 3mn - 10n^2$